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Abstract

Scientific progress heavily relies on rigorous research, adherence to scientific standards, and transparent reporting.
Animal models play a crucial role in advancing biomedical research, especially in the field of gene therapy. Ani-

mal models are vital tools in preclinical research, allowing scientists to predict outcomes and understand complex
biological processes. The selection of appropriate animal models is critical, considering factors such as physiological
and pathophysiological similarities, availability, and ethical considerations. Animal models continue to be indispen-
sable tools in preclinical gene therapy research. Advancements in genetic engineering and model selection have
improved the fidelity and relevance of these models. As gene therapy research progresses, careful consideration

of animal models and transparent reporting will contribute to the development of effective therapies for various
genetic disorders and diseases. This comprehensive review explores the use of animal models in preclinical gene
therapy studies for approved products up to September 2023. The study encompasses 47 approved gene therapy
products, with a focus on preclinical trials. This comprehensive analysis serves as a valuable reference for researchers
in the gene therapy field, aiding in the selection of suitable animal models for their preclinical investigations.

Keywords Animal model, Preclinical study, Gene therapy, Trends

Background

In the realm of gene therapy, a pivotal moment arrived
with Paul Berg’s groundbreaking identification of the
first recombinant DNA in 1972 [1]. This achievement not
only marked a significant milestone but also served as
the catalyst for a series of transformative breakthroughs
in the field. Berg’s discovery fundamentally altered the
landscape of genetic research, opening doors to novel
therapeutic possibilities and paving the way for a new era
of innovation and advancements in genetic engineering
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and gene therapy. Given the accelerated development of
gene therapy products throughout the past century, this
trend is anticipated to persist into the future [2], with a
substantial portion of therapeutic inquiries focusing on
preclinical investigations.

The principal objective of this comprehensive review
article is to scrutinize and interpret preclinical research
about gene therapy products that have garnered current
approval and are presently administered to patients. This
endeavour aspires to serve as an invaluable reference for
researchers embarking on endeavours within the realm
of gene therapy, seeking suitable animal models to facili-
tate their scientific undertakings.
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Main text

The importance of preclinical studies in gene therapy
clinical trials

Preclinical studies in the field of gene therapy play a
pivotal role in advancing our understanding of genetic
diseases and developing potential treatments. Addi-
tionally, all scientific progress and development are
intricately intertwined with prior research endeavours.
For scientific investigations to pave the way for signifi-
cant advancements, they should embody three distinct
attributes: (1) Adherence to Scientific Standards: The
formulation and documentation of a study must strictly
adhere to established scientific norms and guidelines.
(2) Rigorous Parameterization in Animal Studies: In the
realm of animal studies, meticulous attention to param-
eters is essential to ensure the reliability and validity of
such investigations. (3) Transparent and Comprehensive
Reporting: Researchers should exert utmost diligence in
generating a report that is transparent, comprehensive,
and credible in its entirety [3]. When these fundamental
principles are observed in animal studies, they hold the
potential to yield profound implications for the develop-
ment of therapeutic products and our comprehension of
disease pathophysiology. For instance, one of the most
significant advantages of preclinical gene therapy stud-
ies is their ability to address diseases that lack effective
avenues for investigation in human subjects, especially in
the case of rare genetic diseases. In such instances, the
creation of a standardized disease model not only facili-
tates the examination of all disease stages but also allows
for elucidating the initial pathophysiological processes,
even before the onset of clinical manifestations. Further-
more, some of these models elucidate genetic interrela-
tionships, thereby uncovering potential modifier genes, a
pursuit unfeasible within the confines of human subjects
[4].

However, it is important to note that the success of pre-
clinical gene therapy studies heavily relies on their adher-
ence to scientific rigor, transparency, and meticulous
reporting. The lack of these attributes can lead to issues
such as irreproducibility and non-reproducibility, which
hinder progress in the field [5-12]. This predicament
often arises due to incomplete or inaccurate descriptions
within research protocols, encompassing the allocation
of animals among disparate study groups and the crite-
ria underpinning the formation of said groups [11]. In
addition to the formidable challenge of irreproducibil-
ity, another substantial hurdle resides in the discordance
between the outcomes of animal studies and the results
obtained from clinical trials. For example, clinical trials
investigating stroke frequently yield results that diverge
markedly from those generated in preclinical studies of
the same condition. Root causes for this dissonance have
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been traced to the inability of any animal model to faith-
fully replicate the intricacies of human patients and the
absence of robust, well-documented methodologies in
the conduct of animal studies [13].

Considering the aforementioned quandaries, animal
studies that yield congruent results in clinical trials can
furnish superior methodologies for advancing subse-
quent investigations in related domains.

Animal models in gene therapy

The use of animal models in biomedical research, includ-
ing gene therapy, is essential for gaining insights into
complex biological systems and predicting the behaviour
of interventions under specific conditions. These models
serve as invaluable tools for researchers and can broadly
be categorized into two primary functions: elucidating
a system or process and predicting the behaviour of the
target in question [14]. The concept of analogical rea-
soning, as initially introduced by Kant in the “Critique
of Judgment’, posits that qualitative similarities between
entities can be leveraged to forecast causal relationships,
even in the presence of disparities [14]. With the advent
of this concept, the application of models expanded
across various scientific disciplines [15]. For instance, in
the field of shipbuilding, scaled-down models are scru-
tinized to assess their designs, as hydrodynamics princi-
ples remain consistent, independent of scale. Conversely,
in the biomedical sciences, including gene therapy, scal-
ability lacks relevance [14] due to the diverse physical
and behavioural attributes of organisms that impede
such modelling. According to August Krogh’s principle,
“For many problems, there is an animal on which it can
be most conveniently studied” [16]. In biological sci-
ences, the concept of analogy has supplanted scale, and
its widespread applicability is attributed to the notion of
“unity in diversity’, signifying fundamental relationships
among organisms in terms of evolution and development
[14]. Consequently, numerous animal models, notably
laboratory animals such as mice, have been harnessed in
diverse biological research endeavours.

Until 1980, mouse models predominantly comprised
wild-type or spontaneously mutant species. Progress in
fields such as chemotherapy and DNA-damaging agents
owes much to the utilization of these animal models.
Over the last four decades, a multitude of models cater-
ing to distinct objectives have emerged, thereby fostering
advancements across various domains of biological sci-
ence [17]. In recent decades, the significance of animal
models has burgeoned due to the expansion of therapeu-
tic product development, increased preclinical testing,
and clinical trials. Foretelling therapeutic and safety out-
comes in humans now constitutes the primary objective
of experiments conducted before these products enter
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development, heavily contingent upon the judicious uti-
lization of animal models [18].

The classification of animal models in the gene therapy
era poses a formidable challenge, given their rapid pro-
liferation and ongoing evolution. Moreover, diverse types
of animal models each serve specific purposes, under-
scoring the critical importance of selecting the ideal
model aligned with the research objectives. Meticulous
model selection is imperative, as an erroneous choice can
lead to inefficient resource allocation, ethical quandaries,
and the generation of erroneous and unreliable scientific
findings, potentially perpetuating inaccuracies in future
experiments [19]. A 1985 NRC (National Research Coun-
cil) report outlined various factors for the judicious selec-
tion of an appropriate animal model [14]. Paramount
among these factors is the consideration of physiological
and pathophysiological similarities between the model
and the target of research. Additionally, the model’s
capability to emulate desired conditions, such as disease-
like states similar to those in the target (e.g., humans),
warrants due consideration. Factors encompassing the
model’s availability, size, lifespan, and others also play
integral roles in this selection process [20]. Furthermore,
individuals should be vigilant about potential mental and
unconscious biases when selecting models, as familiarity
or ease of use may unduly influence their choices [14].

One approach to mitigate the risk of inappropriate
model selection involves the utilization of models specifi-
cally engineered for diverse conditions, such as geneti-
cally modified or humanized models closely mirroring
human physiology in many aspects [21]. These models
have witnessed substantial growth and find widespread
application in research. Additionally, there are instances
where a single animal model may prove inadequate to
fulfill research objectives, necessitating the concurrent
use of multiple models to ensure reliable and desired
research outcomes [22]. Despite the multifaceted aspects
elucidated concerning animal models, they are not the
panacea for generalizing results and making biomedical
predictions. It is essential to recognize that while alter-
natives to animal models have advanced significantly,
they remain the sole practical choice for numerous
experiments pertinent to human-related investigations.
Numerous studies underscore that, notwithstanding
their limitations, animal models persist as the primary
resource for a multitude of experiments involving human
subjects [14].

Preclinical gene therapy studies

In this comprehensive analysis, a total of 47 approved
gene therapy products, spanning from the inaugural
approval of Vitravene to the latest sanctioned product as
of September 2023, were meticulously scrutinized. The
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principal aim of this investigation entailed the retrieval of
peer-reviewed publications about the preclinical trials of
each product. This endeavour encompassed an extensive
exploration through various means, including the pursuit
of literature referencing the product’s generic nomen-
clature, the examination of the backgrounds of the con-
tributing authors, and the scrutiny of pertinent articles
from diverse sources. In some instances, official docu-
ments released by the regulatory bodies responsible for
product approval were also consulted. In certain cases,
regrettably, no accessible information concerning pre-
clinical drug investigations was ascertainable. It is note-
worthy that references cited within articles linked to the
product under study were occasionally examined, even if
the specific product was not explicitly mentioned therein.
Furthermore, it should be noted that in several instances,
multiple animal models were employed for the preclini-
cal assessments. Additionally, a prevalent feature across
the majority of these investigations was the reliance on
common laboratory animals for safety and pharmacolog-
ical studies, albeit without explicit specification.

The aggregate findings of this extensive inquiry yielded
a corpus of 74 distinct animal models. The classification
of animal models can be approached through various
taxonomies, such as that delineated by Prabhakar, which
delineates four primary categories: inbred strains, disease
induction, xenograft, and genetically engineered models.
Inbreeding has classically been used to obtain geneti-
cally homogeneous animals. Disease induction models
are very commonly used to examine pathophysiology
and drug development. Disease induction animal mod-
els involve manipulating animals to study and replicate
specific diseases for research purposes. Xenograft ani-
mal models involve transplanting human cells, tissues, or
tumour s into immunodeficient animals to study disease
and treatment responses. Genetically engineered models
are developed by altering the genetic composition of an
animal by mutating, deleting, or overexpressing a tar-
geted gene [23].

In alignment with the research objectives of this study;,
the “inbred” category within Prabhakar’s taxonomy was
omitted, and a novel category denominated “spontane-
ous or natural occurrence” was introduced. Spontaneous
or naturally occurring animal models involve the natural
development of a disease in animals without deliberate
manipulation for research purposes [24]. Consequently,
the animal models under examination were categorized
into four principal groups: disease induction, xenograft,
genetically engineered, and spontaneous. In instances
where the available information regarding the nature of
the animal model utilized in the preclinical investiga-
tions of the product was indistinct or inadequately docu-
mented, such instances were classified as not applicable
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Fig. 1 Overview of the study. In this study, by reviewing the available documents about the approved gene therapy products, the animal models
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Fig. 2 Preclinical studies based on the category of animal model
development

or N/A. It is pertinent to highlight that certain animal
models were the product of mating between two animals
with predetermined genetic attributes. In cases where the
parentage of such models was naturally occurring, they
were categorized as spontaneous. Conversely, if one or
both progenitors had undergone genetic manipulation,
their progeny were categorized as genetically engineered
(Fig. 1).

In the broader context, the analysis revealed that the
genetically engineered category accounted for 39% of the
identified animal models, followed by xenograft, disease
induction, and spontaneous categories, with contribu-
tions of 19%, 15%, and 5%, respectively (Fig. 2). Addition-
ally, 22% of the discerned animal models fell into the
N/A category. Among the gamut of models scrutinized,
mice emerged as the most frequently employed ani-
mal species, constituting 54% of the studies. Nonhuman

30, 1% 1%

= Mice
11% Monkey
Rat
Rabbit
20% Do
Cat

Guinea pig

Fig. 3 Preclinical studies based on the species of animal model

primates claimed the second position, representing 20%
of the investigated studies. Notably, other species were
also incorporated into these investigations, including
rats, rabbits, dogs, guinea pigs, and cats. A total of 6% of
the studies did not involve the utilization of animal mod-
els (Fig. 3).

Furthermore, a granular examination of each category
revealed distinctive utilization patterns. In the geneti-
cally engineered category, mice predominated, account-
ing for 79% of the animal species used, trailed by rats
at 17%, and nonhuman primates at 7%. In the disease
induction category, nonhuman primates emerged as the
most frequently employed species, constituting 37% of
the cases, with mice and rabbits equally sharing an 18%
representation, while rats accounted for 27%. The xeno-
graft category was overwhelmingly dominated by mice,
comprising 93% of the animal species employed, with the
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residual 7% being nonhuman primates. In the spontane-
ous category, dogs featured 50% of the cases, followed by
cats and mice, both with equal prevalence. Consequently,
mice held sway in the genetically engineered and xeno-
graft categories, while monkeys took precedence in the
disease induction category, albeit with a caveat that 53%
of the instances involving monkeys were categorized as
uncertain, lacking substantive information regarding
their role in the conducted studies. In the genetically
engineered and disease induction categories, rats fea-
tured prominently (Table 1).

Utilization of animal models in preclinical investigations
of cancer-related products
Among the 74 scrutinized studies, 18 were pertinent to
cancer-related products (Table 2). Notably, animal mod-
els predominated as a fundamental component of these
investigations, with the xenograft methodology being the
principal mode of model generation, encompassing 61%
of cancer-related animal models. In contrast, the remain-
ing 39% comprised 6% attributed to genetic engineering,
and 33% either lacked explicit animal model descriptions
or adopted unspecified models. A significant proportion
of 67% featured mice as the primary animal model spe-
cies. Additionally, monkeys were employed in 11% of the
studies related to cancer, while a singular study employed
guinea pigs. Remarkably, a subset of three studies within
this domain dispensed together the use of animal models.
Within the realm of preclinical appraisals about
the aforementioned products, cell line-derived xeno-
graft (CDX) models were notably prominent, particu-
larly in the context of bone marrow cancers. It is worth

Table 1 Animal models utilized in each category

Percentage

Genetically Engineered

Mice 79%

Rat 14%

Monkey 7%
Xenograft

Mice 93%

Monkey 7%
Disease Induction

Monkey 37%

Rat 27%

Mice 18%

Rabbit 18%
Spontaneous

Dog 50%

Cat 25%

Mice 25%
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highlighting that nude or immunodeficient mice receiv-
ing cancer cell grafts constituted the most frequently
employed animal species. Moreover, the products Carvy-
kti and Oncorine uniquely involved the utilization of
monkeys and guinea pigs, respectively. In the context
of lymphoma, associated with five distinct products,
namely, Carteyva, Breyanzi, Tecartus, Kymriah and Yes-
carta, a conspicuous deficiency in efficient animal models
for lymphoma was observed. Consequently, the relevant
documentation articulated the absence of animal stud-
ies conducted for lymphoma [33, 34, 37, 38]. However,
in the case of Breyanzi, a noteworthy exception emerged,
wherein despite the initially stated lack of an efficient
model for lymphoma, pharmacological investigations
were conducted employing a Raji xenograft animal model
[37]. This model was fashioned based on a distinctive
framework devised by Buchsbaum and colleagues [38],
characterized by specific attributes. A solitary instance
within this purview featured the application of a con-
ditional knockout mouse model, exclusively pertinent
to Gendicine. It is pertinent to note that the spectrum
of animal models for this particular drug extends more
comprehensively, albeit with limited available informa-
tion drawn from recent studies [25].

Utilization of animal models in preclinical investigations

of nononcological products

Among the 74 scrutinized studies, 52 were directed
toward nononcological products, encompassing a sub-
stantial proportion dedicated to genetic disorders
(Table 3). In contrast to preclinical studies of cancer, 55%
of the investigations in this section employed genetically
engineered as the primary method for generating animal
models. Induction techniques were applied in 17% of
instances, while natural occurrences accounted for 8%,
and xenografts represented 4%. The preeminent animal
model employed in nononcological inquiries paralleled
the cancer research sphere, with mice serving as the pre-
dominant choice, utilized in 53% of cases. In addition to
mice, nonhuman primates featured more prominently,
constituting 19% of the studies. Rats were also frequently
enlisted, contributing to 16% of the animal models in this
category. Other species enlisted in this realm comprised
rabbits (4%), dogs (4%), and cats (2%).

Significantly, a substantial portion of the models within
this category was rooted in genetically engineered mod-
els. Such models in preclinical studies emanated from
two principal avenues: procurement from commer-
cial laboratories or in-house generation by researchers.
Moreover, in some investigations, the primary model
served as a foundation, inheriting genetic alterations
from other genetically engineered models, or the foun-
dational disease model emerged through the mating of
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two distinct genetically modified models (as observed in
the EMA (European Medicines Agency) document for
Rovtavian) [83]. Additionally, mice, rats, and nonhuman
primates were the prevalent species subjected to genetic
engineering, each bearing unique attributes pertinent to
specific research objectives. In the majority of cases, ani-
mals exhibited specific genetic aberrations, albeit certain
exceptions involved the use of highly immunodeficient
mice, as exemplified in the Skysona study [79].

Beyond genetic engineering, induction, natural occur-
rences, and xenograft methods also found applicability
within this category. The induction methodology was
multifariously employed to replicate disorders such as
adult familial chylomicronemia syndrome and ischemia
or arteritis, accomplished through specialized dietary
regimens or surgical procedures. Rat and monkey spe-
cies constituted the primary subjects of experimentation
within this domain, although mice and rabbits were spo-
radically incorporated. In the natural occurrence cate-
gory, dogs emerged as the primary species of choice, with
a solitary instance of cat utilization documented [44].
A noteworthy case, pertinent to the Libmeldy product,
involved the creation of an animal model through the
interbreeding of two species with naturally occurring dis-
orders [72]. In contrast, the adoption of xenograft tech-
niques was relatively limited in this category, with only
three investigations resorting to this method. Notably,
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Vyjuvek and Strimvelis product research incorporated
the grafting of cells bearing disease-related defects into
severely immunodeficient mice [49, 86]. The study asso-
ciated with the Zalmoxis product similarly employed this
method to augment the immune system following the
grafting of hematopoietic stem cells.

Of the 74 examined studies, 4 studies were concerned
with products about infectious diseases (Table 4). In
these infectious disease inquiries, the predominant ani-
mal models of choice encompassed nonhuman primates
and rabbits, primarily induced through techniques such
as induction.

Trending approaches in the development of animal

models for investigative research

The preeminent method for establishing animal mod-
els in cancer research is notably the xenograft approach.
Within the purview of xenograft studies, the CDX
method stands as the ubiquitous choice. Indeed, the
advent of CDX models followed the discernment of met-
astatic tendencies and their intricate association with
the site of tumour cell inoculation in laboratory animals.
These models hinge upon the subcutaneous or intrave-
nous injection of human cancer cells into immunocom-
promised mice, a procedure readily achievable within the
confines of a laboratory setting. CDX models have exhib-
ited marked efficacy in the development of cytotoxic

Table 4 Animal models utilized in preclinical studies of products related to infectious diseases

Year of Approval Tradename  Target cell Indication Animal model Details Comments Category References
(General (in vivo/
name) ex-vivo
1998 Vitravene In vivo Local treatment Monkey N/A Systematic— N/A [87-89]
of cytomeg- Treated for every
alovirus retinitis other week
in immunocom- up to 3 months—
promised patients Investigating
the metabolites
in liver, kidney,
and plasma
1998 Vitravene In vivo Local treatment Rabbit N/A Local—Monitor-  N/A [87-89]
of cytomeg- ing for safety,
alovirus retinitis also metabolism
in immunocom- and elimination
promised patients were investigated
2020 Spikevax In vivo COVID-19 vac- Monkey N/A Were injected disease induction [90]
cination intramuscularly
with 10 ug
or100pginal
ml of 1xphos-
phate-buffered
saline (PBS)
of the mRNA1273
vaccine
2020 Comirnaty In vivo COVID-19 vac- Monkey N/A No more informa- disease induction [91]
cination tion was found

for this product
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cancer therapies [92]. However, they have proven less
efficacious when utilized for drugs targeting specific pro-
teins [93]. The utility of CDX models is contingent upon
the specific objectives of a study. Among their advantages
are their suitability for investigating underlying mecha-
nisms, cost-effectiveness, and expeditious development.
Additionally, they prove instrumental in the assessment
of nonspecific cytotoxic agents. Conversely, their limita-
tions encompass the lack of heterogeneity within models
generated through this method, the inability to under-
take immunological investigations utilizing these models,
and their sole composition of cancer cells, bereft of the
rich tumour microenvironment [94, 95]. Notwithstand-
ing these drawbacks, CDX models remain the favoured
choice for preclinical studies and find extensive use in the
majority of scrutinized cases. Furthermore, their utiliza-
tion in diverse research domains has witnessed a sub-
stantial upsurge, underscoring their enduring popularity
[96].

It is imperative to also consider the emergence of
patient-derived xenograft (PDX) models, which ame-
liorate the constraints intrinsic to other methodologies,
yielding more efficacious animal models. PDX models
preserve not only the tumour microenvironment but
also the heterogeneity and mutagenic characteristics
of tumours. Furthermore, they facilitate the study of
metastasis, with the generated model serving as a suit-
able biological surrogate. However, it is noteworthy that
PDX models can only be generated in severely immu-
nocompromised mice, and their efficiency exhibits vari-
ability, rendering them less suitable for early-stage cancer
research [97, 98]. Thus, a judicious evaluation of the fac-
ets of preclinical studies can lead to the adoption of novel
and more efficacious models, enhancing the quality of
such investigations.

Additionally, as previously mentioned, genetic manipu-
lation has emerged as the preeminent method in investi-
gations of nononcological diseases. This approach affords
the potential for creating models that closely mirror the
characteristics of the original disease. Recent years have
witnessed a substantial proliferation in the usage of such
models, attributed to the advent of engineered endo-
nucleases, which enable precise and efficient genome
editing [99-101]. The key step in genome editing is the
induction of site-specific double-strand breaks (DSBs)
by engineered endonucleases that are subsequently cor-
rected by one of two competing DNA repair pathways,
nonhomologous end-joining (NHEJ) and homology-
directed repair (HDR) [102]. Recent advances in genome
editing technologies reflect the rapid development of
engineered endonucleases, including zinc finger nucle-
ases (ZFNs), transcription activator-like effector nucle-
ases (TALENs), and clustered regularly interspaced
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short palindromic repeat (CRISPR) systems [103]. These
endonucleases endow genome editing with two pivotal
attributes: 1) the capacity to selectively recognize specific
target sequences and 2) a high degree of compatibility
for the placement of specified sequences [104]. Predomi-
nantly, the genetic modifications affecting the animal
models under scrutiny are knockouts. For instance, in a
preclinical study centred on Glybera, a product related to
familial lipoprotein lipase deficiency, mice with knock-
out genomic regions linked to lipoprotein lipase were
employed [44]. Similarly, in the context of the Rovtavian
product, which is associated with hemophilia A, knock-
out mice have been instrumental [83]. Such instances
abound in the corpus of examined research.

The primary objective of knockout is to supplant a
specific genomic segment with one that is either non-
functional, modified, or irrelevant. This substitution
can precipitate alterations in the phenotype of the ani-
mal model, thereby manifesting unique disease charac-
teristics. The development of these models represents a
watershed moment in the realm of animal models and
therapeutic product development. The field has wit-
nessed a plethora of advances that permit increasingly
specific and temporally controlled genetic manipula-
tions, in addition to confining mutations to designated
tissues [105]. Notwithstanding these commendable
strides, challenges persist in the handling of these mod-
els. For instance, target genes may not always be ame-
nable to genetic manipulation, and genetic editing in
these models is a complex endeavour that may engender
metabolic perturbations within the animal’s pathways,
precipitating phenotypic anomalies [106]. Nonetheless,
the usage of genetically modified animal models is bur-
geoning, with the advent of novel technologies that hold
the potential to ameliorate the limitations of prior mod-
els, thereby engendering models of greater aptitude than
their predecessors.

Trending species in the animal models for investigative
research

As indicated by the findings of this study, the preclini-
cal investigation of gene therapy products predomi-
nantly employs the mouse model, which stands as the
most prevalent species of choice. Furthermore, upon
closer scrutiny, it becomes evident that mice are exten-
sively employed in the development of genetically modi-
fied animal models. The utilization of mice as an animal
model boasts several merits, including cost-effectiveness
in maintenance. In addition, their rapid reproduction rate
and comparatively short lifespan render them ideal for
genetic inquiries. Significantly, mice exhibit an estimated
genetic similarity to humans in the range of 99% [107].
Furthermore, the extensive research conducted on their
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genetic resources, which are publicly accessible [108,
109], underscores their prominence as a preferred model
for conducting preclinical investigations.

Consequently, following mice, nonhuman primates
emerge as the second most utilized species in the
research endeavours under review. Phylogenetically,
nonhuman primates share the closest genetic proxim-
ity to humans and find widespread application in diverse
domains, encompassing psychiatric, metabolic, repro-
ductive, and immunological studies [52]. In the specific
context of the studies under consideration, nonhuman
primates were predominantly deployed for disease induc-
tion purposes. However, some instances featured their
deployment as noncompliant subjects, likely chosen for
safety and toxicity assessments. It is worth noting that
despite the marked desirability of employing this spe-
cies, limitations such as restricted availability, associated
expenses, and ethical concerns regarding genetic manip-
ulation serve as constraining factors [110].

Within the third category of animal models, rats were
also included. Rats serve as apt animal models exten-
sively employed in the examination of physiology and
pathophysiology, and they constitute a suitable choice for
evaluating the efficacy and toxicity of clinical trials [111—
113]. In the studies scrutinized, rats were most frequently
employed in genetic manipulations.

Last, it is noteworthy that dogs were solely featured in
the studies under consideration as models with naturally
occurring traits. Specifically, hereditary diseases in dogs,
classified as naturally occurring, bear the highest clinical
resemblance to human diseases [114]. This congruence
has engendered substantial demand for the use of dogs in
these particular contexts.

Conclusions

The selection of an appropriate animal model constitutes
a pivotal and fundamental step in the execution of ani-
mal studies, particularly within the domain of preclinical
research. This selection process necessitates strict adher-
ence to established scientific criteria and standards, as it
holds the key to attaining optimal outcomes not only in
the present investigation but also in subsequent research
endeavours. An effective strategy for model selection
involves recourse to prior studies that have traversed all
requisite phases, culminating in the approval of result-
ant products. By doing so, one can confidently employ
the chosen animal model and extend the generalizability
of its findings to forthcoming investigations. Moreover,
this retrospective approach enables the identification of
successful methodologies for generating animal models
and the identification of species suitable for the intended
research purposes.
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In the context of the current study, we focused on the
examination of animal models employed in preclini-
cal assessments of gene therapy products. Our findings
have illuminated that the xenograft methodology, pre-
dominantly implemented through the CDX technique,
stands as the most prevalent approach in preclinical
studies about cancer therapeutics. Furthermore, in the
realm of generating animal models for diverse patholo-
gies, with a particular emphasis on genetic disorders,
genetic manipulation emerges as the predominant
technique, particularly in the creation of knockout
models. Within this landscape, mice and nonhuman
primates have emerged as the two most frequently uti-
lized species.

Notably, recent trends underscore a discernible
upswing in the utilization of mice and genetic manipu-
lation methodologies as we approach the contemporary
era. It is imperative not to overlook the transformative
potential inherent in emerging technologies for the crea-
tion of these animal models, as the incorporation of state-
of-the-art innovations undoubtedly holds promise for the
generation of models of superior quality and fidelity.
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