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Abstract

Background The gut-brain axis (GBA) in Parkinson’s disease (PD) has only been investigated in limited mice models
despite dysbiosis of the gut microbiota being considered one of the major treatment targets for neurodegenerative
disease. Therefore, this study examined the compositional changes of fecal microbiota in novel transgenic (Tg) mice
overexpressing human a-synuclein (haSyn) proteins under the neuron-specific enolase (NSE) to analyze the potential
as GBA model.

Results The expression level of the aSyn proteins was significantly higher in the substantia nigra and striatum of NSE-
haSyn Tg mice than the Non-Tg mice, while those of tyrosine hydroxylase (TH) were decreased in the same group. In
addition, a decrease of 72.7% in the fall times and a 3.8-fold increase in the fall number was detected in NSE-haSyn

Tg mice. The villus thickness and crypt length on the histological structure of the gastrointestinal (Gl) tract decreased
in NSE-haSyn Tg mice. Furthermore, the NSE-haSyn Tg mice exhibited a significant increase in 11 genera, includ-

ing Scatolibacter, Clostridium, Feifania, Lachnoclostridium, and Acetatifactor population, and a decrease in only two
genera in Ligilactobacillus and Sangeribacter population during enhancement of microbiota richness and diversity.

Conclusions The motor coordination and balance dysfunction of NSE-haSyn Tg mice may be associated with com-
positional changes in gut microbiota. In addition, these mice have potential as a GBA model.
Keywords Parkinson’s disease, a-Synuclein, Gut-brain axis, Microbiota, Transgenic mice

Background

The gut-brain axis (GBA) is the bidirectional neurohu-
moral communication between the central nervous sys-
tem (CNS) in the brain and the enteric nervous system
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enterochromaffin cells [4]. These cells are affected by the
gut microbiota through the regulation of mucus and bio-
film production, gastrointestinal (GI) motility, GI perme-
ability, and immune response [5]. Furthermore, the gut
microbiota helps regulate the production of neurotrans-
mitters, the protection of the intestinal barrier, enteric sen-
sory afferents, bacterial metabolites, and mucosal immune
function in the brain [1, 6]. The dysfunction of GBA was
detected widely in several neurodegenerative diseases, such
as Parkinson’s disease (PD), Alzheimer’s disease (AD), and
Huntington’s disease [7—9]. Therefore, GBA has attracted
considerable attention as one of the treatment targets for
these diseases.

The correlation between alteration in the gut microbiota
composition and PD has been investigated in only a few
models, even though most of them with PD phenotypes
are rodents. thymocyte differentiation antigen 1 (Thyl)
-alpha-synuclein (a-Syn) transgenic (Tg) mice exhibit dys-
biosis of gut microbiota including Proteus sp., Bilophila sp.,
Lachnospiraceae, and Verrucomicrobiae during significant
impairment in beam traversal, pole descent, and hindlimb
reflex [10, 11]. A similar alteration in the gut bacterial
composition was detected in the methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced mode with the PD
phenotypes. The relative abundance of several microbial
families, including Lachnospiraceae, Prevotellaceae, and
Erysipelotrichaceae, increased or decreased remarkably in
the PD model compared to the control group [12]. In addi-
tion, the bidirectional communication via the gut-—brain
axis was detected in Dendritic cell factor 1 (Dcfl) knock-
out (KO) mice. Three phyla, including Bacteroidetes, Fir-
micutes, and Proteobacteria, show significant changes in
the microbiota composition between the wild-type (WT)
and Dcfl KO mice [13]. On the other hand, C57BL/6-Tg
(NSE-haSyn) mice which overexpressed haSyn proteins
under the control of the neuron-specific enolase (NSE)
provided from National Institute of Food and Drug Safety
Evaluation (NIFDS) in Korea as one of new PD model. This
model showed activation on the DJ-1 mediated cytoprotec-
tive mechanism against oxidative stress as well as alteration
on the lipoprotein profile [14]. But, C57BL/6-Tg (NSE-
haSyn) mice have never been used to study the correlation
between the GBA and phenotypes of PD.

This study examined whether dysfunction of the motor
neurons in NSE-haSyn Tg mice can link to the dysbiosis of
gut microbiota to verify the potential as a novel model for
GBA.

Results

Verification of aSyn protein overexpression in the brain

of NSE-haSyn Tg mice

The levels of aSyn protein expression in the substantia
nigra and striatum of NSE-haSyn Tg mice were measured
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to verify the overexpression of aSyn protein under the
control of the NSE promoter. A similar expression pat-
tern was observed in the substantia nigra and striatum
of NSE-haSyn Tg mice. The level of this protein was sig-
nificantly higher in NSE-haSyn Tg mice than Non-Tg
mice (p=0.031 in substantia nigra, p=0.001 in striatum)
(Fig. 1A, B). Therefore, these results suggest that NSE-
haSyn Tg mice can serve as a model for PD by success-
fully expressing the causative gene.

Reduction of TH expression in the brain of NSE-haSyn Tg
mice

This study examined whether overexpression of aSyn
protein is accompanied by changes in TH protein expres-
sion because a decrease in TH expression led to PD by
diminishing dopamine synthesis [15]. The levels of TH
proteins were measured in the substantia nigra and stria-
tum of NSE-haSyn Tg mice. This level was decreased
significantly in both brain regions, even though the total
expression level was higher in the striatum (p=0.0001)
than substantia nigra (p=0.003) (Fig. 1C, D). In addi-
tion, these changes in the level of TH protein expression
were reflected in the tissue distribution of the brain. The
brown color density for TH proteins was lower in the
substantia nigra and striatum of NSE-haSyn Tg mice
than in the Non-Tg mice (Fig. 2). These results show that
overexpression of the aSyn protein may tightly associate
with the reduction of TH expression in the brain of NSE-
haSyn Tg mice.

Dysfunction of motor behavior performance in NSE-haSyn
Tg mice

The abnormalities in the motor behavior performance
were analyzed in NSE-haSyn Tg mice using the rotarod
test to determine if a decrease in TH expression was
accompanied by a dysfunction of motor coordination
and balance. After 5 min on a rotating rod, the fall times
decreased by 72.7% in NSE-haSyn Tg mice compared
to 90-week-old Non-Tg mice (p=0.01), while fall num-
ber increased by 3.8 times in the same group (p=0.002)
(Fig. 3). Therefore, these results suggest that NSE-haSyn
Tg mice may exhibit the dysfunction of motor coordina-
tion and balance as a marker for PD.

Alteration in the histopathological structure of the Gl tract

in the brain of NSE-haSyn Tg mice

Next, this study examined whether the dysfunction of
motor coordination and balance in NSE-haSyn Tg mice
was accompanied by alteration in the histopathologi-
cal structure of the GI tract as the first evidence of the
GBA. The histopathological structure of the GI tract was
maintained constantly between Non-Tg and NSE-haSyn
Tg mice (Fig. 4A). On the other hand, the thickness of
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Fig. 1 Expression leves! of haSyn (A and B) and TH (C and D) proteins in the substantia nigra (A and C) and striatum (B and D) of NSE-haSyn Tg
mice. After detecting the haSyn and TH proteins using a specific antibody, the band density for this protein was analyzed using densitometry.

The tissue homogenates were prepared on two to three tissues per group, and western blotting was analyzed twice for each sample. The level

of each protein was normalized to 3-actin. The data were presented as the mean +SD. *P <0.05 versus Non-Tg group. Abbreviation: haSyn human a
synuclein, TH tyrosine hydroxylase, NSE neuron-specific enolase, Tg Transgenic mice
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Fig. 2 Tissue distribution of TH in the substantia nigra (A) and striatum (B)
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of NSE-haSyn Tg mice. After staining specific antibodies, the stained

brain section was observed by optical microscopy at 100x and 400x magnification. Brown or dark brown indicates the expression of TH

in the cytoplasm of the substantia nigra and striatum. The immunostained slides were prepared from three to five mice per group, and the color
density for each sample were observed in duplicate. Abbreviations: Abbreviation; haSyn human a synuclein, TH tyrosine hydroxylase, NSE
neuron-specific enolase, Tg transgenic mice, ML medial lemniscus, VTA ventral tegmental area, SNc substantia nigra pars compacta, LV lateral

ventricle, St striatum, Cx cortex, cc corpus callosum

the villus was decreased significantly on the duodenum
(p=0.002), jejunum (p=0.015), and ileum (p=0.006) in
NSE-haSyn Tg mice compared to Non-Tg mice, while
the crypt length was remarkably decreased in the same
group (p=0.002) (Fig. 4B). These results suggest that the
dysfunction of motor coordination and balance in NSE-
haSyn Tg mice may be associated with changes in the
histopathological structure of the GI tract.

Alteration in the profile of the fecal microbiota

of NSE-haSyn Tg mice

Finally, this study analyzed the overall microbial compo-
sition in fecal samples of NSE-haSyn Tg mice to deter-
mine if the profile of the fecal microbiota is affected by

haSyn-induced PD. The Chao index and Shannon index
showed that the richness of microbial species in NSE-
haSyn Tg mice was increased significantly from that of
the Non-Tg mice (p=0.035) although the increase in
their diversity is not significant (p=0.117) (Fig. 5). In
addition, a significant alteration between the Non-Tg and
NSE-haSyn Tg mice was detected in 11 microbial genera.
Among them, the population of only two genera, includ-
ing Ligilactobacillus (75%) and Sangeribacter (53%), were
remarkably decreased in the fecal sample of NSE-haSyn
Tg mice compared to the Non-Tg group. Most of them,
including Scatolibacter, Clostridium (9.4 times), Clostrid-
ium (5.6 times), Feifania (5.5 times), Lachnoclostridium
(5.4 times), Acetatifactor (5.1 times), Lawsonibacter (4.8
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Fig. 3 Rotarod test of NSE-haSyn Tg mice. A Time to fall off the rod
in the RotaRod test. B Number to fall off the rod in the RotaRod test.
C Picture of mice on the rotarod. The time and number of falls were
measured on five to six mice per mouse. The data are presented

as the mean £ SD. *P <0.05 versus non-Tg group. Abbreviation: haSyn
human a synuclein, NSE neuron-specific enolase, Tg Transgenic mice

times), Desulfovibrio (4.5 times), Kineothrix (2.8 times),
Blautia (2.2 times), Alistipes (2.0 times) and Hemin-
iphilus (1.2 times) population at the genus level, were
increased in the same group (p=0.004) (Fig. 6). Fur-
thermore, the colony structure of the fecal microbiota
was compared by principal coordinate analysis (PCoA)
based on the Bray—Curtis dissimilarity matrix. Cluster
separation was detected between the Non-Tg and NSE-
haSyn Tg mice (Fig. 7). By PICRUSt2, 293 metabolic
pathways were predicted from the data. These pathways
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consisted of three major groups, including biosynthesis
(166, 56%), superpathway (89, 30%), and degradation (56,
19%)(p=0.039 in Glycolysis, p=0.036 in Anaerofrucat-
Pwy, p=0.046 1in Cmet2-Pwy, p=0.041 in Calvin-Pwy,
p=0.04 Pwy-5484, p=0.037 Pentose-P-Pwy, p=0.036
in Pwy-6163, p=0.038 in Pwy-7111, p=0.033 in Non-
oxipent-Pwy, p=0.031 in Pwy-5695). Figure 8 shows the
top 100 metabolic pathways. Therefore, the motor dys-
function of NSE-haSyn Tg mice may be closely linked
to the dysbiosis of the fecal microbiota in NSE-haSyn Tg
mice at the genus levels.

Discussion

PD was characterized by the degeneration of dopamin-
ergic neurons in the substantia nigra, and the forma-
tion of Lewy bodies (LB) aggregated by aSyn in other
neurons [16]. In addition to these characteristics, the
GBA was recently verified in PD based on an analysis of
the correlation between the misfolding and deposition
of a-Syn in ENS and CNS, and the imbalance of the gut
microbiota [17-19]. Several microbiological techniques,
including fecal microbiota transplantation (FMT), have
been considered novel therapeutic strategies to improve
PD symptoms [20]. This study examined the potential of
NSE-haSyn Tg mice as a GBA model through the analy-
ses of gut microbiota and the detection of PD pheno-
types. In the present study, compositional changes of gut
microbiota were detected in NSE-haSyn Tg mice with
overexpression of haSyn protein, decreasing TH and
dysfunction of motor balance. The present results show
that overexpression of haSyn under the NSE promoter
can induce PD symptoms and may be associated with
changes in the gut microbiota composition. In addition,
these results provide evidence that NSE-aSyn Tg mice
can be used as a GBA model.

Several remarkable phenotypes for PD were detected
in genetically engineered mice (GEM) and chemical-
induced model. Among them, Thyl-aSyn Tg mice are
the best-known model for PD. In these mice, haSyn
proteins accumulated in various brain regions, includ-
ing the neocortex, olfactory region, limbic system, basal
ganglia, and substantia nigra [21]. A severe dysfunc-
tion of motor activity was detected in beam traversal,
hindlimb clasping reflexes, pole descent, and nasal
adhesive test, even though studies show no difference
between four and 12 weeks [10, 11, 22, 23]. In addition,
the Dcfl KO mice showed several PD-like phenotypes,
including learning and memory deficits, slow movement,
and anxiety [13, 24, 25]. Progressive motor dysfunction
was detected in the SNCA p.A53T mice at 10 months
old [26]. Furthermore, the neurotoxin model of PD
induced by administering MPTP exhibits a decrease in



Kim et al. Laboratory Animal Research

(2023) 39:30

Duodenum

Jejunum

Ileum

Page 6 of 14
’é‘a)
30 I
g *
)
=
S »
v
=
= 0
> Non-Tg NSE-haSyn
’a‘ o
e e <
2 2
)
< »
= 2
S0
=0
»

Non-Tg NSE-haSyn

o

Villus thickness (um)
&

Non-Tg NSE-haSyn

Colon

- *

bt bt pt et et

oB8838836888

Crypt length (um)

Non-Tg NSE-haSyn

using an optical microscope. The degree of histopathological changes in the retina tissue was measured using an Image J program. The
H&E-stained slides were prepared from three to five mice per group, the histopathological parameter analyses were analyzed twice for each sample.
The data was presented as the mean £ SD. *P <0.05 versus Non-Tg group. Abbreviation; G/ Gastrointestinal tract, haSyn human a synuclein, NSE

neuron-specific enolase, Tg Transgenic mice, H&E Hematoxylin and eosin

dopamine concentration, which was reflected in dam-
age to dopaminergic neurons [12]. In this study, other
Tg mice overexpressed haSyn protein under the con-
trol NSE promoter. The level of haSyn protein expres-
sion was higher in the substantia nigra and striatum of
NSE-haSyn Tg mice than in Non-Tg mice. These changes

were reflected in the dysfunction of motor activity. Most
results from the present study for the PD phenotypes
related to motor dysfunction in NSE-haSyn Tg mice were
similar to previous studies that analyzed the motor activ-
ity and accumulation of aSyn protein in the chemical-
induced model and GEM. On the other hand, the results
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of the behavioral analyses are more diverse in previous
studies than in the present study.

Meanwhile, many recent researchers have actively
studied the regulation of gut microbiota in PD ani-
mal models to verify the correlation between dysbiosis
of microbiota and PD phenotypes [27-29]. However,
most of them were focused on the PD models induced
by several toxic chemicals including MPTP, rotenone
and 6-hydroxydopamine [30—32]. Only few studies have
examined the changes in the gut microbiota of PD model
mice induced by overexpression and deletion of specific
target genes [10, 11]. Among them, significant altera-
tions on the composition of microbiota were detected
in two transgenic mice overexpressed human aSyn pro-
teins. Thyl-aSyn Tg mice showed remarkable changes
in eight microbial families, including Proteus sp., Biloph-
ila sp., Roseburia sp., Lachnospiraceae, Rikenellaceae,
Peptostreptococcaceae, Butyricicoccus sp., and Verru-
comicrobiae [10, 11]. A53T missense mutation of aSyn
(A53T-aSyn) overexpression mice exhibited an increased
level of two microbial populations, such as Parabater-
oides and Ruminococcus, compared to the control, while
a-ketoglutarate (AKG)-based diet significantly changed
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Lachnospiraceae NK4A136_group in A53T-aSyn Tg
mice [26, 33]. In addition, the microbiota composition
in Dcfl1KO mice was altered significantly in Proteobac-
teria and Prevotellaceae during the induction of PD-like
phenotypes [13]. Based on all the above results, Proteo-
bacteria, Prevotellaceae, and Lachnospiraceae can be
considered the most commonly altered microorganism
during PD symptoms. This study investigated whether
the overexpression of haSyn protein under the control
NSE promoter can induce microbial composition altera-
tions in the GI tract. The abundance of 11 microorgan-
isms at the genus level was remarkably higher in the
NSE-haSyn Tg mice compared to the control, while those
of two microorganisms were lower in the same group.
Most of these results at the genus level differed from pre-
vious studies. These differences in the age of the analyzed
mice were expected to be one of major factors affect-
ing the number of altered microbe genera significantly
although various causing factors including diet, drinking
water, breeding condition and affected genes can contrib-
ute to these differences.

Conclusions

This study examined the compositional changes in fecal
microbiota of NSE-haSyn Tg mice to evaluate the poten-
tials as a GBA model. The changes in the microbial com-
position of feces and PD phenotypes were analyzed in
90-week-old NSE-haSyn Tg mice. At the genus levels,
the abundance of 13 microbial populations was changed
significantly in the NSE-haSyn Tg mice during defect of
motor activity. Therefore, the NSE-haSyn Tg mice can
be considered a novel mouse model for GBA study. On
the other hand, further researches using the FMT tech-
nique, antibiotic treatment or co-housing experiments
are required to verify the critical role of compositional
changes for microbiota in aSyn accumulation-induced
PD. Moreover, the lack of scientific evidence for a clear
mechanism of action on the relationship between micro-
organisms and PD symptoms in this model should be
considered as a limitation of our study.

Methods

Care and use of experimental animals

The experimental protocol was approved by the Pusan
National University-Institutional Animal Care and Use
Committee (PNU-IACUC, Approval Number PNU-
2022-0139) and Korea National Sport University-IACUC
(KNSU-IACUC-2023-04) based on the ethical pro-
cedures for scientific care. All mice were housed at the
PNU-Laboratory Animal Resources Center (LARC)
accredited by the Korean Food and Drug Administra-
tion (KFDA) (unit 000231) and the Association for
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Assessment and Accreditation of Laboratory Ani-
mal Care International (AAALAC International) (unit
001525) as well as Laboratory Animal Room of Korea
National Sport University. The standard irradiated chow
diet (Samtako BioKorea Inc., Osan, Korea) was provided
to all mice during the experimental period, and was
allowed to be ingested freely with tap water (ad libitum).
The mice were breed at the facility where the tempera-
ture of 23 + 2°C, the relative humidity of 50 + 10%, a strict
light cycle (on at 08:00 h; off at 20:00 h) and a specific
pathogen-free (SPF) state were maintained.

NSE-haSyn Tg mice were overexpressed haSyn pro-
tein under the control of the NSE promoter (Additional
file 1: Fig. S1). The 90-week-old NSE-haSyn Tg mice with
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C57BL/6Korl background (male, n=9) and the same age
of Non-Tg mice (male, n=9) was kindly provided by the
Department of Laboratory Animal Resources of the NIFDS
(Chungju, Korea). After the final rotarod test, all mice were
euthanized with CO, gas with a minimum purity of 99.0%
according to the AVMA Guidelines for the Euthanasia
of Animals. A cage containing animals was placed in the
chamber, and CO, gas of 99.0% was introduced into the
chamber without pre-charging, with a fill rate of ~50% of
the chamber volume per minute. The death of the mice
was confirmed by cardiac and respiratory arrest or dilated
pupils and fixed bodies. The brain and total gastrointesti-
nal (GI) tract samples were collected from all euthanized
Non-Tg and NSE-haSyn Tg mice.
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Rotarod test

A Rotarod test was performed to evaluate fore and hind
limb motor coordination and balance impairments, as
described elsewhere [34]. The mice were briefly trained
in the Rotarod (Daejong Lab, Seoul, Korea) at 10-20 rpm
until all mice reached a stable performance (for baseline).
The preliminary test was conducted on the first day, and
the main test was conducted on the second day. Dur-
ing the main test, each mouse was placed on a rotating
tube at a steady speed of 10 rpm. The rotating speed was
increased gradually from 10 to 20 rpm in 200 s, and the
final speed was then maintained for at least 300 s with
two more attempts. The running time was collected and
expressed as the fall times (s) and number (ea) for each
mouse.

Western blotting analysis

The total proteins were collected from the brain (Sub-
stantia nigra and striatum) of Non-Tg or NSE-haSyn Tg
mice using the Pro-Prep Protein Extraction Solution
(Intron Biotechnology Inc., Seongnam, Korea) based
on the company’s recommended manual. After collect-
ing total brain homogenate, their concentrations were
measured using a SMARTTM Bicinchoninic Acid Pro-
tein assay kit (Thermo Fisher Scientific Inc., Wilmington,
MA, USA). About 30 pg of brain proteins were loaded
to 4-20% Mini-PROTEAN® TGX"™ Precast Protein
Gels electrophoresis (SDS-PAGE) for 90 min, and the

resolved proteins were transferred to a Trans-Blot Turbo
Mini 0.2 pm Nitrocellulose Transfer Packs for 3 min. The
membranes were then probed overnight with the follow-
ing primary antibodies at 4°C: anti-aSyn antibody (Santa
Cruz Biotechnology, Santa Cruz, CA, USA), anti-TH
antibody (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), or Ponceau (Sigma—Aldrich, St. Louis, MO, USA).
The resulting membranes were washed with a washing
buffer (137 mM NacCl, 2.7 mM KCl, 10 mM Na,HPO,,
2 mM KH,PO,, and 0.05% Tween 20), followed by incu-
bation with 1:1000 diluted horseradish peroxidase-con-
jugated goat anti-rabbit IgG (Zymed Laboratories, South
San Francisco, CA, USA) for 2 h at room temperature.
The blots were then developed using a Chemilumines-
cence Reagent Plus Kit (Pfizer Inc., Gladstone, NJ, USA).
The signal images of each protein were acquired using a
digital camera (1.92 MP resolution) of the FluorChem®
FC2 Imaging system (Alpha Innotech Corporation, San
Leandro, CA, USA). The protein densities were semi-
quantified using the AlphaView Program, version 3.2.2
(Cell Biosciences Inc., Santa Clara, CA, USA).

Histopathological analysis

After being separated by four specific areas, including
duodenum, jejunum, ileum, and colon, the samples were
fixed in a 10% formalin solution for 48 h at room tem-
perature. The middle region of each tissue was embed-
ded into a paraffin block. After sectioning the tissue
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block into 4 mm thick slices, these sections of the GI
tract were stained with an H&E solution (Sigma—Aldrich;
Merck KGaA) for 3—4 min at room temperature. Finally,
the villus and crypt regions on the stained section were
observed by optical microscopy (Leica Microsystems,
Glattbrugg, Switzerland), and subsequentially thick-
ness and length of them were measured using the
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Leica Application Suite X Microscope Software (Leica
Microsystems).

Immunohistochemical analysis for brain

Immunohistochemistry (IHC) was performed as
described elsewhere [35]. Briefly, Non-Tg and NSE-
haSyn Tg mice were anesthetized using intraperitoneal
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injection of Alfaxan (JUROX Pty Limited, Rutherford,
Australia, 13 mg/kg body weight i.p.). The mice were
perfused transcardially with 1xPBS followed by 4%
formaldehyde to remove the blood and fix the brain tis-
sue. After perfusion, the fixed brain was collected from
the skull of each mouse and fixed overnight in formal-
dehyde, after which each brain was dehydrated and
embedded in paraffin. A series of brain sections (10 um)
were cut from the paraffin-embedded tissue using
a Leica microtome (Leica Microsystems, Bannock-
burn, IL, USA). The brain sections were deparaffinized
with xylene, rehydrated, and pretreated for 30 min at
room temperature with PBS-blocking buffer contain-
ing 10% normal goat serum (Vector Laboratories Inc.

Burlingame, CA, USA). The samples then underwent
IHC analyses. The sections were then incubated with
primary mouse anti-TH antibody (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) for 24 h, and incubated
in secondary antibody for 2 h at room temperature. The
reagents that reacted with ABC (Avidin—Biotin Com-
plex) were visualized by stable 3,3"-diaminobenzidine
(DAB; Invitrogen, Carlsbad, CA, USA) as a substrate
at room temperature for 2 min, counterstained with
hematoxylin, dehydrated, and mounted with cover-
slips. Finally, the color distribution on the brain sec-
tion was observed under the optical microscopy (Leica
Microsystems).
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Fecal microbiota analysis

The fecal microbiota analyses were performed as
described in previous study [36]. After collecting the
total DNA from the fresh feces (1 g) from a single mouse
(n=4 in the subset group) using a DNeasy Power Soil
Kit (Qiagen, Hilden, Germany), the sequencing librar-
ies were prepared based on the Illumina 16S Metagen-
omic Sequencing Library protocols. The products of
genes for 16 s rRNAs were amplified by 1st and the 2nd
PCR process using Universal primer and NexteraXT
Indexed primer, and purified based on the qPCR Quan-
tification Protocol Guide (KAPA Library Quantification
kits for IlluminaSequencing platforms). The sequence
of these PCR products was analyzed by the paired-end
(2300 bp) sequencing method using the Macrogen unit
on the MiSeqTM platform (Illumina, San Diego, CA, USA).
Their data were curated using the Fastp program [37] and
assigned to Operational Taxonomic Units (OTUs) using
the Cluster Database at High Identity with Tolerance
(CD-HIT-OUT) [38]. Also, sequence of each OTU was
aligned according to BLAST+ (v2.9.0) [39] in the Refer-
ence DB (NCBI 16S Microbial), and analyzed using the
MAFFT (v7.475) program. Furthermore, the compara-
tive analysis of several microbial clusters was analyzed
using QIIME (v1.9) [40]. The Shannon Index was used to
obtain the a-diversity information, and the Rarefaction
curve nd Chaol values were used to verify their infor-
mation. Moreover, the Weighted/Unweighted UniFrac
distance was applied to determine the B-diversity, while
PCoA was used to visualize the flexibility [40]. In addi-
tion, the PICRUSt2 (Phylogenetic Investigation of Com-
munities by the Reconstruction of Unobserved States,
Huttenhower Lab, Boston, MA, USA) was utilized to pre-
dict the MetaCyc metabolic pathway of the fecal microbi-
ota. The ggplot (v3.3.2) program was applied to visualize
the function of each microbiota, and PCoA analyses were
used to represent the dissimilarity between microbiota.

Statistical analysis

The statistical significance between Non-Tg mice and
NSE-haSyn Tg mice was evaluated using the Student
t-test (SPSS for Windows, Release 10.10, Standard Ver-
sion, Chicago, IL, USA). All values are expressed as
the means+SD; p-values (p<0.05) were considered
significant.
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